CHAPTER XIi PHASE TRANSFORMATIONS 1I:
SOLIDIFICATION

11.1 Introduction

A remarkable, though nonexclusive, property of metals is their ability to form alloys, i.e., solids
formed by a mixture of atomic components. This mixture gives rise to phases that are mixtures of the
solid having physical and chemical homogeneous properties. The chemical composition of phases
can be well defined ( such as line compounds having clear stoichiometry Ni3Al, CuAu, etc...). That
is, intermediate or variable phases can be solid solutions in which a supersaturation of constituents
can exist. Generally, intermediate phases have defined crystal structures (chemically ordered alloys)
but can sometimes form amorphous solids or quasi-crystals. What sets an intermediate phase apart
from chemical compounds (i.e., molecules) is that it typically exists in large aggregates comprising
many atoms with some short-range chemical ordering. In contrast, a molecule can exist as a
compound comprising only 2-atoms. We must note that this description of an "alloy" can be extended
to other materials, such as ceramics, composites, and polymers.

The concept of a phase is related to the stability of a thermodynamic system. This chapter defines the
formalism necessary to understand how phases form under different conditions with the classic
thermodynamic parameters and their constituents' composition or concentration. We then specifically
explain how phases form (Solidification, phase transformations towards solid-state), governing their
morphology and microstructure.

11.2  Thermodynamics background
N
We consider a binary alloy formed of Na atoms of type A and Ng atoms of type BXa= N, :NB IS
NB
1

the concentration of A and X# = N +N. X4 is the concentration of B.
A B

Since we consider the system's evolution at given temperature and pressure conditions, we use the

minimum Gibbs free energy as a criterion. The variation of this energy 4G is given by the emitted or

absorbed heat during the reaction 4Hm and by the change in entropy from the mixture, 4Sm. Thus:
AG, =AH, —-TAS, (11.2)

11.2.1 Calculation of the mixing entropy (ideal solid solution)

Suppose now that 4Hm = 0, which means that a net-zero energy balance is required to bind the atoms

to one another, i.e., an ideal solution. The mixing entropy is given by the number of possibilities of

distributing Naor Ng on N lattice sites.
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(N,+N,)!

TAS, =kT In
N,IN,!

J —(using the Stirling formula InN!= NInN-N) =

_ kT[(N,+N,)In(N,+N,)—N,inN, — N,inN,]

N,=X,n

Considering a mole of solution a, where "a is Avogadro s constant:

TAS,, =kT[n,(X,+Xp)Inn, +In(X, + X;)]-n,(X,(nn, +In X,)+ X (Inn, +In X,))]
As Xa+ X5 =1 \ve can simplify this in:
TAS,, = kT[-n,(X,InX, + X,InX,)] = —RT (X, InX, + X ,InX ;) (11.2)
The total free energy of the mixture is given by:
G=G,X,+G,X,+RT(X,InX, +X,InX,) (11.3)
But we know from the definition that G = uN (3.37), which in terms of molar energy gives:
G =X, + 11X, (11.4)
By setting (11.3) and (11.4) equal, we get:

1, =G, + RTInX,, (11.5)
1, =G, +RT X,

where we can recognize the expressions describing the thermodynamic equilibrium of a chemical
reaction. Equation (11.4) is equivalent to describing G(Xp) 55 being enveloped by its tangents.

Ga=tg

A XB — B
Figure 11-1: Relation between free energy and chemical potential.
11.2.2 Formation heat or mixing enthalpy 4Hm calculation (real solution)

The bond energy between neighboring atoms must be considered in a solid solution.
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Here, we consider a binary alloy A+B, where we randomly place atoms of A and B in the alloy
mixture. This type of alloy implies that the two kinds of atoms have somewhat similar properties.

Let:  Va= A-A interaction potential

Vis = A-B interaction potential

Vs = B-B interaction potential

In all cases:
AH, ~AE, =N,V + NV + NV, (11.6)
where Nas is the number of A-A pairs,
1 (11.7)
N,,=NX, X, D)
and z is the coordination number.
N, = lNsz (11.8)
Thus: 2
1
L. Nyy = _NZX.;
Similarly: 2
and N,p=NzX, X, (11.9)
If we express the concentration of the alloy in terms of the element A, we can write:
X, =X 04 Xz =1-X,
Substituting in (11.8), we get:
1 11.10
N, =5NX* ( )
2
N,, = %Nz(l—xf (11.11)
N,, = NX(1-X) (11.12)
Then:
AH =AE, = %NzXQVM + %Nz(l -X)’V,, + NeX(1-X)V,, =
1
= ENz[XVM -X(1-X)V,,+(0-X)V,, - X(1-X)V,, +2X(1-X)V,, 1=
= %Nz[XVAA +(1=-X)V,, +2X(1—X)(VAB —%)
V=V -— VAA + VBB
AB
Now, letting 2 , Which is the additional energy term due to the mixing (see Figure
11-3), AH,, pecomes:
1
AH,, == N2 XV, , + (1= X)V;, +2X(1= X)V] (11.13)
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We can distinguish three cases:
1) V=0 that s to say, Vas ~ Vas ~ Vas
2) Close neighbor atoms are of type A or B indifferently: the solid solution is disordered.V >0 or
V VAA +VBB
" 2 thatis Vasand Vas <Vas

The atoms of the same type tend to agglomerate. Thus, phases (a and ) separate with different
chemical compositions. A heterogeneous mix is then obtained (Figure 11-2).

B @y

B

Figure 11-2: Heterogeneous mixture

< VAA + VBB
3) V<Oor ** 2 thatis Vaz <Vasand Ves

In this third case, the atoms rearrange so that their neighboring atoms are other species because it is
the most energetically favorable. We then obtain an ordered solid solution, possibly forming very
stable chemical compounds (stoichiometric line compounds).

A y=2X(1-X)V

05V

slope2Vv slope 2V

>

X

Figure 11-3: Graph of the function 2X (1-X) V with V>0.

In terms of molar concentrations X, and XB, the interaction term above can be written:
NZX(1-X)V=0X X, =QX2X,+X, X)) =Q(X,(1-X,)’+X,(1-X,)*)  (11.14)
and equation (11.13) can be written as:

AH, =G,X, +G,X, +QX X, (11.15)
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Thus:
AG, =AH, -TAS, =G X, +G,X, +QX X, +RT(X,InX , + X,InX,) (11.16)

Summing the terms of (11.16), excluding the self-energy terms GAXA"'GBXB, is represented in
Figure 11-4. The mixing enthalpy term is the one illustrated in Figure 11-3. According to the sign of
V, AHm can have positive or negative curvature. On the other hand, the mixing entropy term, given
in equation (11.2), is always positive.

+ Xy —m—
‘| ; |
A AGrnix B
(a) @<0,high7 (b) <0,lowT
AHi‘nix
+ . +
Hl‘nl)ﬂ AGmix
4] Xe 0
AGrm)( XB el
-7 .
_rﬂsmix Asmlx
A B A B
(€} @>0, high7 (d), 2> Q lowT

Figure 11-4: Free energy of the mixture 4Gm as a function of the mixing enthalpy variations and the mixing entropy

11.2.3 Chemical potential and activity

Considering the expression of the free energy in terms of chemical potentials of equation (11-4) and
the expression for the formation heat (enthalpy) of the mixture, we can express the chemical potentials
of a regular solution as:

1,=G,+Q(1-X,+RThX,

2 (11.17)
1, =G, +Q(1—X,)* +RTInX,

It is possible to reduce these expressions into the more simple form obtained for ideal solutions by
introducing the activity, %4, of a substance A in the solution and defining:

1L, =G,+RTna,

(11.18)
Uy =Gy +RTIna, (11.19)
Thus:
a Q a Q
In—4=—-—(1-X,)’ =B =20 (1-X,)
X, oy (1= X s oy 1= Xa) (11.20)
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4 _ (11.21)
X, Ya

The ratio
is usually called the activity coefficient. If ¥4 <1an exothermic reaction occurs (#a <Ga), the
mixture tends to form stable compounds. If V4 >1an endothermic reaction occurs, heat must be
provided to drive mixing components. If 74 =Iwe have an ideal solution (Raoult law). For small
concentration ranges, we can consider 7a = €915t (Henry s law)

1

|-
g // 3 S
/ 1L/
/ Q~°°°
2
0 ~ _ _ __Henry's law 0
O XB — 1
A B

Figure 11-5: Activity as a function of concentration

11.3 Binary phase diagrams
11.3.1 Chemical potential

Components A and B often do not have the same crystal structure in pure solids. As such, the free
energy of the solution of B atoms in A must be derived. For example, atoms of B take an unstable
configuration with the crystal structure of A. This increases the free energy proportionally to the
concentration of B. We perform the same analysis for atoms of A in B (Figure 11-6). We must
consider two phases, a and B, with a chemical potential given by equation (11.5) or in a more general
way by equations (11.18) and (11.19). For example, in the case of an ideal solution:

pe=G%+RT InX*” (11.22)
1P =GP + RTInX* (11.23)
11.3.2 Free energy of a mixture of phases
Consider a binary alloy A+B with a species B concentration: X=X,

A simplified notation is used in the following paragraph, and index B is dropped because we are only
concerned with this species. We also note that in this paragraph, we use the notation X" to indicate

the concentration (volume, molar, or %) of a constituent and f" to indicate the proportion of a phase.
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Let [ the proportion of alloy with concentration X“

B . _ :
I the proportion of alloy with concentration X P
with F“ 7 =1,

Then, the concentration of the alloy with concentration X is expressed as:
X=f"X"+fPXxP = foX* +(1- f)XP

X-X“

. XP-X
f o a—
Xf-x

=== (11.24)
We deduce that: X? - X* and

f=1-fo=

The free energy of the alloy with concentration X is expressed as a linear combination of the free
energies of the phases a and f:

X-X ., X-X" _,
+

X’ -x- xP—-x

X-X°

xP-x-

G=f'G"+f°G" =

G=G"+(G*-G*) (11.25)

G is given by the common tangent" to the curves o and  (Figure 11-6):

~GI+(GP -G 2N
1 2 1 XZ_XI

G(r)

min

If X varies between X1and X , the concentrations of the phase components do not:

A B _ A
in a, we have: X and Xi =1-X,
A B _ A
in B, we have: X5 and X2 =1-X;
fang—X fﬁzx—x1
o B — —
However, " and / do vary: X, — X and X, - X,

Remark

o B o B
As Maand Haor Hs and Mz define the tangent lines to the energy minimum (Figure 11-1), we can
identify the following chemical potentials,

. . 11.26
My = pE ond M5 = Hh ( )

11.3.3 Phase Diagrams Construction

The energy minimization described in the prior section is at the heart of the construction of phase
diagrams. Figures 11-7 and 11-9 give us two examples. The common tangent, which signals the
energy minimum (11-6), allows us to identify the most stable phases and their proportions. We note

that the more the temperature decreases, the less stable the liquid phase transforms into solid phases.
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There is a common tangent between the three phases at a precise temperature: this temperature is
called eutectic temperature. It is the lowest melting point of the alloy.

Let us compare two typical cases in Figures 11-7 and 11-9. In Figure 11-7, the phases a and 3 are
characterized by two crystal structures. They illustrate a classic eutectic diagram with the
decomposition into two solid-state phases.

? T, P = const.

@]
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Figure 11-6: Minimum energy diagram of a mixture of phases

Figure 11-9 shows the phase diagram of an alloy formed by two phases with the same crystal structure
but with mixing issues in the solid state (Figure 11-8). We form a eutectic phase, but the region with

a negative free energy curvature has a spinodal decomposition into two phases %1and 2. The limits

between the phases ®1and %2and the mixture of phases are located on the common tangent (Figure
11-8): the solubility limit.
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Figure 11-7: Eutectic phase diagram, «, and S phases have different crystal structures

A

G

solubility limits

Figure 11-8: Energy diagram and solubility limit
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Figure 11-9: Eutectic phase diagram, Ciand *2 phases with the same crystal structure with a miscibility gap

Physics of materials Chapter XI page 231



Spinodal decomposition

Consider an alloy quenched in the solid state in the decomposition zone %+ %2 \We note that two
cases are possible if we look closely at the energy diagram (Figure 11-10). First, if the composition

(326 ~ 0)

— =
X0 of the alloy is inside the zone defined by the inflection points of G such that dx , any
fluctuation decreases the initial energy Go Then, the alloy becomes unstable and decomposes

immediately in two phases *1and ®2without potential barriers. The set of points defined by the
inflection points as a function of temperature is called a spinodal curve. Suppose the composition of
the alloy is between the solubility limit and the spinodal curve (/in Figure 11-10). In that case, any

decomposition implies a potential barrier, and the precipitation of ®2in %*i is impossible without the
nucleation of precipitates, as discussed in Chapter XII.

i :
£ - :’“"'; Chemical
5 spinodal
FER—-—- SR R -
Z . ‘ \
I ; A |
BRI 1
(@) 1 + |
0 Xe Xo |1 Xo Xg | X 1
T g
l
0 |
| |
| |
(b) l |

Figure 11-10: Spinodal decomposition
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11.4 Solidification

From the metallurgic point of view, solidification is undoubtedly the most important transformation.
The production of metals and metallic alloys almost always undergo a solidification process, e.g.,
producing rare ingot alloy materials and cast parts. Therefore, it is fundamental for engineers and
material physicists to find and improve solidification processes to gain access to the production of
homogeneous materials with desired and uniform compositions without macroscopic defects being
homogeneous physical, chemical, and mechanical properties. Variations in the chemical composition
within the solidified ingots cause detrimental mechanical properties and result in lower corrosion
resistance or fatigue. Therefore, it is vital to know the fundamental aspects of solidification's physical
and chemical mechanisms to design desired material properties and for quality control. Thus, we must
have detailed knowledge of the solidification processes, nucleation and growth, the morphology of
the interface, and segregation.

In a liquid, atoms (or molecules) vibrate at a frequency v with an average energy of 3/2 kT. In a solid,
atoms also have an average vibrational energy of 3/2 KT. The difference is that the neighboring atoms
change more often in a liquid than in a solid (high diffusivity). In a liquid, atoms can be displaced
over long distances.

Solidification is a first-order transformation, meaning there is a discontinuity in the first derivatives
of energy: V and S. Table XI-1 shows that, in most cases, the volume variation during solidification
is negative. That is, the liquid density is lower than that of the solid. The arrangement of the atoms in
a liquid is more disordered than in a solid (compact or pseudo-compact structures). Heat must be
supplied to melt a solid into a liquid: the latent heat of melting L, which takes entropy variation
(positive) into account.

Table XI1-1: Volume change of different elements during solidification 47=Vsol-VLiq

Element AV (in %)

Al -6

Mg -5.1
Cd -4.7
Zn -4.2
Cu -4.1
Ag -3.8
Hg -3.7
Pb -3.5
Sn -2.8
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Na -2.5
K -2.5
Fe -2.2
Li -1.65
Sb +0.95
Ga +3.2
Bi +3.3
a) Latent heat
The free energy of a liquid per unit volume is: G, =H, -T5,
The free energy of a solid per unit volume is: Gy = H —IS;
I e
- G
L
i AG
Gs
solid liquid
(i
0 T T; T

Figure 11-11: Diagram showing the equilibrium energy of solid phases and liquid phases schematically

At melting temperature (or solidification temperature), we have G, = GS, which in turn implies:

H,-T,S, = H, TS, (11.27)
AH,=H,—H;=T.(S,—S;)=T.AS, (11.28)
AH,=H,-H,=L (11.29)

L is the latent heat of melting. Following the definition (11.29), this quantity is positive considering
the transition to the liquid phase. However, this energy is the heat liberated by the body during
solidification, which is regarded as negative.
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L
ASFZ_
TF

(11.30)

As the difference in order between a solid and a liquid is much bigger than between two solids, AS;
associated with solidification is relatively independent of the crystal structure.

Table X1-2: Entropy change during the solidification of different metals

Metal Structure La;t:lr/];cnr(;?at Melti(t;]lg()point ASF
Aluminum FCC 2500 993 2.6
Copper FCC 2700 1356 2

Lead FCC 1300 600 2.2
Sodium CcC 635 370 1.7
Zinc HCP 1560 693 2.3

b) Relation between volume and latent heat: Clausius-Clapeyron equation

If two phases o and B have different densities, their energy varies differently as a function of
temperature. A way of maintaining equilibrium during temperature changes is to change pressure.
The free energy once more dictates the equilibrium:

dG* =V*dP - S§°dT

dG* =VPdp - SPdT (11.31)
Since at equilibrium, G*=G” , then dG* =dG” and thus:
(jﬂeq - {:i :f; = AAf/ (11.32)
As seen before in (11.28), for solidification AG = AH —TAS =0 Therefore:
(11.33)

(a2)
dr),, T,AV
This is Clausius-Clapeyron relation. It gives the relation between pressure and temperature at
equilibrium as a function of the latent heat AH and the volume variation (molar) between phases.
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If, as in the solidification of most

Irone (he), materials (water being an exception),
/ dP
150 — / E >0
AH<0 and A41V<0, we have e
125 —
) Figure 11-12 shows that the equilibrium
< 100 — solid-liquid curve has a positive slope since
o ;  thetransformation from a iron and y iron is
2 Irony (cfc) / endothermic. In contrast, if the volume of
8 75 / the y phase is smaller than that of th
= e y phase is smaller than that of the a
/ phase (FCC is more compact than CC
50 — [dP)
liquid dTr .
structure), then the slope “ s
55 __| Irona (cc) Irond (cc) negative.) p

400 800 1200 1600 2000
Temperature [°C]

Figure 11-12: Equilibrium diagram of iron

114.1 Nucleation

According to equilibrium thermodynamics, a liquid is not in equilibrium below its fusion point Tt. In
reality, we can observe a metal in the liquid state in particular conditions, way below T¢ (for example,
we can reach 250° C of supercooling for Nickel).

Solidification is a process that occurs through nucleation and growth. In general, a nucleus can be
defined as a group of atoms in the liquid phase with the same symmetry as the solid. Creating a

nucleus requires the creation of a liquid-solid™ interface, which implies positive free energy. This
formation energy of the interface is given by supercooling.

At a temperature T < TF, the excess of free energy 4G is:

AG=G,—-Gg=AH_ -T(S, -S;)=L-TAS;, (11.34)
Taking into account (11.30):
AG=L-T L =L AT =as,AT (11.35)
F TF

AT =T,-T

where is called supercooling.

The minimization of the formation energy of the liquid-solid interface leads to two kinds of
nucleation:

- the general nucleation, where nuclei form randomly throughout the liquid

- the localized nucleation, where nuclei form on preferential sites.
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a) Homogeneous nucleation

The formation of a nucleus of a solid requires a variation in free energy, which is made up of two

terms, one related to the volume and the other to the surface:

AG,=AgV+Ags

The first term on the right of (11.36) is negative, whereas the second is positive.
If we suppose that the nucleus is spherical with a radius r:

AG,=(g,— gL)iJ'U‘3 +anriy = —im‘3 £AT +4nr’y
# 3 3 T,
with y = specific free energy of the interface.

The radius giving the stability limit of the nucleus r* is given by:

JAG, 0
or
and we get:
r* — zyTF
LAT

For the nucleation radius. The binding energy representing the potential barrier is:

16 T;
AG*=—qy* —-E
37 AT

Avyor?

AG

_ _ 3
WAQAQQxf.

Figure 11-13: Critical radius of nucleation
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At the temperature Tr, A7 = 0 and AG* = oo, r*= 0.

Solidifying a pure liquid at the equilibrium temperature Tr is impossible. This agrees with
experiments. We always need supercooling for a transformation to occur. If a nucleus were formed
every second for solidification to begin (a reasonable estimate within an order of magnitude), a
supercooling of 200 K would be required. In practice, extensive samples do not have supercooling
higher than 5 K. This shows the effectiveness of external particles as catalyzers of the nucleation
process. The localized nucleation (on an external particle or the edges of the mold) requires lower
activation energy than the general nucleation.

b) Localized nucleation

In most cases, solidification takes place in molds or solid crucibles. The nucleation begins then on
the edges of the mold, where discontinuities such as cracks, porosities, and oxide films provide
potential initiation sites. Inclusions or groups of impurities inside the liquid metal can also be centers
of early crystal growth.

Consider the formation of a solid nucleus on the plane surface of an external particle. The chemical
forces determine the growth of this nucleus at the interfaces, which is represented by the surface
tensions:

Yr=interface energy liquid-impurity
Yis= interface energy solid-impurity
Ys.=interface energy solid-liquid

liquid

|
|
|
I
: R

VIL 0 vis

U Y

external particle

Figure 11-14: Wetting phenomenon

The equilibrium of surface tensions gives (Young s law):
Y ="YistVsc056 (11.40)

If Vs >V the nucleus tends to be spherical
If Vs <71 the nucleus tends to spread on the surface
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We can determine the free energy of formation and the radius of curvature of the critical nucleus
(exercises):

R = _2'}/_SL (11.41)
‘ Agy,
3
AGf’“ =%7£%(2—30059+cos39) (11.42)
By

loc
We note that & ( loc” for localized) is independent of the angle 6. The critical radius is identical to

that of the general nucleation. However, in the case of nucleation on a substrate, the number of atoms

R AG*

- - - - - oc - -
constituting the nucleus with curvature radius is much smaller. Therefore, ©*~< is proportional

loc
to the volume of the nucleus since ¥sz ~ & (11.42).

loc __ en
For 6 =, we have AG” = AG;
point of contact with the surface.

: the solid does not wet the substratum, and the nucleus has only a

loc __ ; . N
For 6 =0, AG" =0 the solid wets perfectly the substratum (we have a thin film on the surface of
the substratum). There is no barrier to nucleation. The required supercooling becomes zero.

Therefore, heterogeneity decreases, and consequently, supercooling is necessary for solidification.
Moreover, the substratum's geometry or shape plays a non-negligible role. For instance, cracks on the

surface decrease AG

(Figure 11-15).

¢, since the interface solid-liquid is decreased for an equal nucleation volume

liquid liquid

N

Figure 11-15: Localized nucleation: a) on a smooth surface, b) in a crack

11.4.2 Statistics of Nucleation

AG

* kT
According to Boltzmann's statistics, we can write: N =N,e (11.43)

with N" = number of critical nuclei made up by n [atoms/cm?®]

Ne = number of possible sites for the creation of a nucleus/cm?

AG" = formation energy of a critical nucleus (11.39)

To grow a nucleus, we assume that a nucleus has a critical size of n atoms and that this nucleus
captures one atom.
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Then, the rate of nucleation | (= the number of nuclei per unit volume and per unit time) can be
written:

I=N"n, v,

with N’ = number of embryos of n atoms/cm?®
s = number of atoms at the interface

Ve = capture frequency

AGY

Ve=vyze 1 (11.44)

with Vb = Debye frequency
AG’ = activation energy of an atomic jump (migration energy)
Z = coordination number

Then:
_AG'+AG* (11.45)

Now, equation (11.39) implies that:
2
AG* = EMST_};—I 3
370 12 (T-T,)
forT_)TF AG" —>oognd I =0
forT—>0 I-0

JkI

,,q\r

T T

mg

Figure 11-16: The nucleation rate has a maximum for Tmg

The nucleation rate has a maximum for Znafor T =T and is defined by dI /dT =0 The shape of
AG

the curve depends on the ratio between »and AG® and on their variation as a function of
temperature.
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11.4.3 TTT curves (Time-Temperature-Transformation diagrams)

Let o be a parameter, a = # of nuclei/cm®.
To reach a specific value of a, we must wait a time t with a = | t.

We can write (11.45):
* s
logt=log X+ 8¢ 1, AG 1 (11.46)
I, kT kT
(94
— S oo
For T2Tr: 150 and 1  thus 1og? —>ee
o AG' 1
. ) logt =log—+ Y T (11.47)
For T —0:AG s very small compared to AG” | so that 0

AG? does not depend on T. Then we have an asymptote with slope AG® / k.

Let now y be the degree of transformation. Then, supposing that o varies between %minand %max | we
can write:
a-a,,
y=—-"" (11.48)
amax - amin

It is interesting to describe the evolution of the transformed phase on a time-temperature diagram. As
shown in Figure 11-17, we can draw the curves relative to a given degree of transformation as a

function of time and the reciprocal of temperature. For example, the asymptotes obtained *=and

@rex have a slope AG® k| following (11.47). In practice, we build and use these diagrams for
isothermal transformations.

log Cmin log “max
Iy & log(1)

N

/T

slope AG*/k

Yir

Figure 11-17: TTT asymptotic diagram
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Rapid quenching
a) Metallic materials

The TTT diagram of nucleation has a nose." Nucleation can be avoided by rapid cooling. However,

in the case of pure metals, cooling speeds of 108 °C/s are insufficient to prevent crystal growth. On
the other hand, in the case of alloys, the redistribution of atoms is necessary for nucleation, and
amorphous solids (metallic glass) are formed with very rapid cooling techniques (melt spinning).

b) Non-metallic materials

Removing nucleation and producing amorphous structures for non-metallic materials (polymers,
ceramics) is relatively easy since the structural units of these materials are significant, meaning that
forming a grain of critical size is harder (e.g., silicates, glassy oxides, polymers). Thus, the "rapid

quenching” of ceramics forms new glassy materials, e.g., V205> 1€0,, MoO;, NO;

\%

liquid

crystal

S

| T

Tp

Figure 11-18: If nucleation occurs during the cooling, we can observe a discontinuity in volume change. Without
nucleation, we can observe a discontinuity in the thermal expansion coefficient (change of slope in the curve V=V(T))
associated with forming an amorphous or glassy state.

1144 Crystal growth
We can mention a particular case of nucleation: the growth of crystals at the interface with vacuum

or gas. Consider the two extremum cases: a crystalline disordered surface (rough) and an ordered
surface (smooth).

a)

Figure 11-19: Atomic representation of a) a disordered or rough surface, b) an ordered or smooth surface
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The energy of an atom tends to decrease when the number of surrounding atoms increases. For
example, case b) in Figure 11-19 has minimum energy since the atoms have a maximum number of
closest neighbors in that configuration. However, the surface entropy increases with the disorder.

Therefore, we have to minimize the surface free energy:

G

surf

= }i;ud'-_ ITS

_ifS

-if Hoy is predominant, we are in the situation b)

«f i3 predominant, we are in the situation a)

surf

The growth of a given interface is done by developing steps (type B). If all steps are eliminated by
growth, new steps are necessary to continue the growth, which means that a significant oversaturation
is required. However, experiments show that it is possible to observe growth with a slight
oversaturation. This type of growth is explained by the presence of screw dislocations (as discussed

and see § 6.7 section of the textbook).

The nature of the crystal interface depends on the material characteristics and the crystalline nature
of the surface. Some crystals grow with ordered surfaces and distinct crystallographic orientations:
organic materials, Si, Ge, and ice. On the contrary, metals solidify with surfaces with no particular

crystallographic orientation.

11.4.5 Dendritic growth in pure metals

(a)

O
t5) 0 (c)

—

Tertiary

Secondary

(d)

A dendrite corresponds to the particular
morphology of a crystal similar to a tree
for its multiple branches. This structure is
often observed during solidification.

Dendritic growth occurs only for
substances in growth conditions that lead
to a disordered solid-liquid interface.

Two cases must be distinguished
according to the composition: the growth
of dendrites in systems with only one
component (pure metals) and the growth
in alloys, which is treated in 8§ 11.5.

Figure 11-20: Dendrites growth scheme. a) Spherical nucleus, b) the interface becomes unstable, c) primary branches,

d) secondary branches development.
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TL. In pure metals, the dendritic growth arises from the interfacial

X instabilities due to the solution's supercooling. The degree of
Solid Liquid supercooling depends only on temperature.
To— [ If the liquid is poured into a cold mold, the temperature distribution is
/ similar to that shown in Figure 11-21. The mold walls extract the heat
—V liberated by solidification, and removing this latent heat determines the
solidification speed. The heat equation requires that the heat flux J (per
(@) unit surface and per unit time) is given by:
y J=Agrad(T)
Lx' (11.49)
?Cf“f" Liquid Considering the progression of the solid-liquid interface, we can write:
[ | |
P | |
EEEE T T
i : E | -__theat Ag a— =Lv.+4, a— (11.50)
: : : : ox S ox L
|
11

| |

| |

| |

Lo

b where As : AL are the thermal conductivities, and Yi is the interface

(b) propagation velocity. The heat flux in the solid equals the flux liberated
yL by solidification plus the heat flux from the liquid.

Solid Liquid X The velocity of propagation of the solidification can be written as:
I 11 | |
nuen 1, lar| _, for
EANAVY ve—{%— ] e } (11.51)
: ‘/' ',' ,/' ~ L dx|g ox|,
e
U I A | | 1
(c)

Figure 11-21: Instability of the plane related to the temperature gradient. The temperature gradient (a) stabilizes the
planar interface in the present case.

The heat flux through the solid must be sufficient to extract the heat from the liquid and the
solidification process to have a positive velocity.

There is always temperature fluctuation or fluctuations in the velocity i, which lead to protrusions

in the interface. Assume that there is a local variation in the velocity Yi. Since the temperature
gradient is inversely proportional to the distance between isotherms, it increases in the liquid and
decreases in the solid around the protruded region. This means that the velocity of the interface at the
protrusion is lower than that of the plane interface (Figure 11-21). As a result, the protrusion becomes
smaller and disappears. The planar interface is then stable.

The situation is different in the case of a supercooled liquid, where temperature gradients are inverted
compared to Figures 11-21. In this case, the heat liberated during the solidification is transferred to
the supercooled liquid. As a result, the temperature gradient in the liquid is negative. At the
protrusion, isotherms in the liquid are spaced closer than in the solid, and the temperature gradient

becomes even more negative. The velocity Vi, determined by (11.51), increases, and the protrusion
grows faster than the plane interface.
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TL_ The solid-liquid interface moving into a supercooled liquid is then

X unstable (a protuberance, as small as it might be, can develop and

Solid | Liquid destroy the planar nature of the interface). As a result, more branches
can form, creating a branched tree-like structure called a dendrite.

i ™™ Remark

i 4 The curvature radius of the dendrites must be higher than the critical

@) radius of nucleation (11.38) - (stated in another way, the dendrite
}'L melts). This phenomenon is illustrated in the paragraph below.

Solid Liquid X The growth rate of a dendrite

| |
: If the latent heat of solidification is rejected only in the liquid, the
1

|
|
! Iheat growthrateis:

“+—l
P = _ AT (11.52)
: : L|dx|,
| I
(b) From the solution to the heat equation in spherical symmetry, we can
show that the temperature gradient is given by:
i i
X _ —
Solid Liquid of| _T.-T, -AT (11.53)
y i ox|, or ar
| I
BY g _ T
) : with: i = interface temperature
\g" : T.. = temperature far from the interface
P r = curvature radius of the dendrite
(©) @ = constant = 1if the shape is elliptic
Figure 11-22 : Instability of the planar v = ﬁﬂ (11.54)

front related to the temperature gradient. Thus: L ar
In the case of supercooling, the )

temperature gradient (a) destabilizes the

planar front and there is a tendency to

form a dendrite

This means that as r becomes small, ¥ increases. Nevertheless, if 7 —0then Vi = which does
not make physical sense, we must consider the nucleation process. For a supercooling of a given AT,
, a certain critical radius " exists, which guarantees the stability of a nucleus. Any solid region with

hr>rc

a radius smaller than '« is unstable and melts. Therefore, only the domains wit can grow.

Consider the temperature distribution in front of the dendrite of different curvature radii for a given
supercooling of AT, (Figure 11-23).

Physics of materials Chapter XI page 245



T

4 = Heat Flux

Figure 11-23: Growth of a dendrite by supercooling

The equilibrium temperature of the interface T, depends on the curvature radius r.

r=2?’sf_ TF =2ySL TF (11_55)
L T,-T, L AT,

We define them according to (11.38):

¢ T,=T. AT, =AT, jng T=T1.

ris minimum i and then

r tends to infinity if T; > Trand thus AT 20 This means that if the interface does not evacuate
enough heat, the driving force of the dendritic growth stops.

We can then write that:

AT AT T (11.56)
r 0
-
As ATy = AT, + AT e can write:
AT = AT, (1 _ i] (11.57)
r
For " =T., (" being the critical radius corresponding to the supercooling 2%0), AT =0
if r>1. T, >T_ g5 solidification releases heat
if r<r., T; <T.. pecause fusion absorbs heat. In this case, the dendrite melts.
The growth rate of the dendrite is, according to (11.54):
A, AT, I,
v':ﬁ(l_?) (11.58)
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We note that the propagation velocity at the dendrite's tip tends to zero for ¥ = "eand for r —>
where the conduction becomes too slow. The maximum velocity Y= is obtained for dendrites with a
radius close to 2. We can deduce a distance between branches of roughly ar,

11.5 Solidification of binary alloys

In § 11.4, we have discussed the case where the driving force of the solid phase growth was the degree

of supercooling of the liquid phaseATﬂ. However, when we consider alloys, the situation is quite
different: the concentration gradients and, thus, diffusion become the main driving forces of
solidification. In particular, diffusion in the liquid phase, which is faster by 3 or 4 orders of magnitude
than diffusion in the solid phase, determines the structure of solidification observed in materials. We
can distinguish 3 cases:

1) Slow solidification at thermodynamic equilibrium,
2) Solidification at the thermodynamic equilibrium of the liquid phase and negligible diffusion in the

solid phase,

3) Solidification is regulated by diffusion in the liquid phase.

We consider a eutectic phase diagram where the boundaries between the liquid and solid phases are
straight lines ( equation11-24), so a more straightforward analysis can be carried out. Thus, we can
write:

T = kX +Ti for the limit of the solid phase (solidus) (11.59)
T=K. X +T . - - (11.60)
— 2221 ™ 2o for the limit of the liquid phase (liquidus)

For a temperature T (horizontal section of the phase diagram in Figure 11-24):

X, = i—LXL KX, (11.61)

s with (k<I).
We also have k, k-
X,
We note in particular that for a concentration X, , the limit of the liquidus is located at & . The limit

of the solidus at XXo .
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Figure 11-24: Model phase diagram (Xs=kXL)

In this case, we examine the repartition of solute (atoms B in concentration X in A) in the liquid and
solid phases (a+p). We can imagine an ideal experiment in which we measure the composition of a
bar with the solidification front proceeding at a velocity v.

1151 Thermodynamic equilibrium

It is the case in which the cooling rate is sufficiently low to allow the solid phase to reach its
equilibrium state by diffusion. The composition of the solid and the liquid is determined at all times

by the equilibrium diagram. At the temperature T3, all the solids have the initial concentration X
11.5.2 Thermodynamic equilibrium in the liquid - no diffusion in the solid
It is the (realistic) case in which diffusion in the liquid is sufficiently high compared to the cooling

rate, so a perfect mixture of the constituents is maintained. As temperature decreases, the liquid

becomes richer in solute, whereas the solid is impoverished compared to the equilibrium line (Figure
11-25).
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Distance along bar x —=

Figure 11-25: Schematic composition of phases during the solidification of a bar (monocrystal)

We can show (exercise) that the concentration in the solid follows the law (Scheil equation):
X = kX, (1= f)*" (11.62)
And the concentration in the liquid:

X, =X,(f)*" (11.63)

where fzand fSare, respectively, the fractions of the liquid and solid phases.

We note that, for k<1, these functions predict a sharp increase in the concentration upon complete
solidification: the last drops of liquid solidify with an eutectic composition (Figure 11-25).
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11.5.3 solidification controlled by diffusion in the liquid phase

We consider the case where the solute concentration in the solid phases controls diffusion in the
liquid. At steady-state, the quantity of solute rejected in the liquid during solidification must be
evacuated by a flux corresponding to the concentration gradient in the liquid. We can write:

vX =vXL+DLaa£ (11.64)
x

where Vis the velocity of the solidification front (assumed planar) and D s the diffusion coefficient

in the liquid. Taking into account the assumption that Xy =kX, , the solution of equation (11.64) for
a steady-state velocity yields:

_ -k [_(1=k) 11.65
XL(x)—X0[1+ p exp{ (DLKV)H ( )
S L
X ;\\
kX,
¥ [ X

S T_\ L
\
Xob— e —

o ] tE/

4

Initial Final
transient transient M Xe

Steady state \
J" max
XO o2 o s

kX,

Distance

Figure 11-26: Schematic composition of phases during the progressive solidification of a bar (monocrystal). The
velocity v is chosen so that a steady state is reached.
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X,

The concentration of the liquid is & at the solidification front and decreases exponentially to Xo far
from the interface.

The liquidus gives the equilibrium temperature of the liquid with the solid. If kvis the slope of the
liquidus, the temperature of the liquid at the concentration X; equals (11.60):

T.=T,+k,X, (11.66)

The temperature profile at equilibrium before the interface (located in x=0) is then:

[ 1- 1-k
T,=T,+kX, 1+¥cxp _(1-k) (11.67)
k (D, /v)
The actual temperature in the liquid, T, is:
Tr=T,.+a—T x=T0+kL£+a—T x (11.68)
ox|, k |ox|,
Solid —_— Liquid

Constitutional
supercooling

Sotid —>F— Liquidg

Figure 11-27: The comparison between T and T shows that part of the liquid has to be in supercooling

The liquid is then out of equilibrium compared to its concentration. This supercooling results from
the concentration gradient in the liquid and is called constitutional supercooling.
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This supercooling zone does not exist if the slope of the line giving the actual temperatures is higher
than the slope of the tangent to the curve T, Thatisto say, if

oT

ar| _ kX, A=k (11.69)
ox

. D, k

The difference between the actual and equilibrium temperatures is illustrated in Figures 11-27.

11.6 Solidification structures of alloys

In the case of pure metals, two kinds of solid-phase growth exist: normal to the surface plane and the
dendritic growth direction. However, in the case of alloys and in addition to these two solidification
processes, we have cellular growth, which only depends on constitutional supercooling.

11.6.1 Cellular texture

The solid-liquid interface presents a lattice of hexagonal cells (Figure 11-28). This structure can be
explained by solidification producing an excess solute in the liquid.

Figure 11-28: Cellular texture of an Sn-Pb alloy

When a protuberance develops in the liquid, the convex surface produces lateral and longitudinal
concentration gradients. The excess solute accumulates around the base of the protuberance and
decreases the solidification temperature of this region (Figure 11-29). The protuberance does not
spread on the sides. The solute concentration in the liquid can reach the eutectic composition,
producing the solidification of cells of o phase surrounded by a eutectic composite a+f.

Remark

A solidified alloy in such conditions with no supercooling solidifies as a pure metal, i.e., a planar
front growing normal to its liquid-solid interface.
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Figure 11-29: The growth of a cellular structure is related to the constitutive supercooling

11.6.2 Dendritic texture

The cellular texture appears at the limit of the constitutive supercooling. Increasing the supercooling
(constitutive or thermal cooling) produces a dendritic texture (Figure 11-30b). Indeed, growth is
controlled by the velocity at which the solute is removed from the interface. The velocity of the
interface is proportional to the concentration gradient (11.64).

_p X, 1
TR 9x (X, - X,)

The concentration gradient of the solute is more substantial and closer to the protuberance. Thus i it
is more significant at this location, and the interface is unstable. This results in the passage to dendritic
growth.
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We observe the formation of primary, secondary, and tertiary dendrites, and so on. Dendrites are an

example of a fractal structure. The formation of dendrites is also related to the preferential orientations
of crystals.

Ny

P
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v;d‘

]
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\
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Figure 11-30: Growth of cells in CBr4 (a) and passage to a dendritic structure (b)

11.6.3 Eutectic solidification

The eutectic reaction is of the kind: L=+ B Eutectic alloys can show different morphologies, as
in Figure 11-31: lamellar (a), rod-like (b), globular (c), or acicular (d).

Togp (ree . Top Iree
surface surlace

Growth Growth
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- L
Solid-iqug  drrection - Sotid- liquid

nterface interlace
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Top iree Top tree
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L+ Lo .. e \..___/.:--:-._\;
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.'-‘_ '\{‘ {\\‘\:- \f\_{
% -
N NOUARTLT T4
: ; rowth NS/
Growih & - M- Solid-liquid ¢ : G 15" 2N sond Hqud
direction s R Y drection 1)L :-r—\ 7, ¢
- xS e el mlerface 41t v v ] interface

Figure 11-31: Morphology of eutectic structures
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From the energy point of view, the most stable configuration is in the globular shape since it has the
lowest surface/volume ratio. However, this texture requires repeated nucleation of the second phase.
Therefore, the lamellar structure is the most common one since, in this case, the two phases grow
cooperatively, and the need for a nucleation process is reduced.

Growth of lamellar eutectics

The free energy (per unit volume) during the reaction L = @+ B js expressed as a function of the
parameter A (distance between the phases a and B, in the form of lamellae).

S 2
g(A)= g(m)+}"’;—“ﬁ=g(oo)+% (11.70)

This formula considers the formation energy of an interface between the lamellae.

, \‘_‘
T GP\)
ZVQB
G () x
l )
1
|
|
|
|
A X X;—. B

Figure 11-32: Energy diagram during the formation of a eutectic with spacing 1 between the lamellae

We have an increase in the free energy of the solid when A, the distance between the lamellae,
decreases. This leads to a displacement of the eutectic melting point towards lower temperatures. For

a given AT, a critical distance A exists such that L, o, and B are in equilibrium at Ty —AT Consider

the concentration gradients in front of the lamellae o and B. At the interface L-a, the liquid is rich in
B atoms, whereas, at the interface L-B, the liquid is rich in A atoms. Atoms B diffuse then from the
lamellae o towards the lamellae 8 and the A atoms in the opposite direction.

B —V

Figure 11-33: Growth of eutectic lamellae with diffusion in the liquid
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The average concentration gradient in the liquid between the lamellae o and B is:
AX 22X P-Xr) (11.71)
A2 A

If the interface moves by dx during a time dt, a quantity of atoms B equal to (X" - X5)dx is rejected
in the liquid at the interface with the a phase. Proceeding, in the same way, leads to equation (11.64):

2D, (X:P - XL

(XL - X%y = >

and thus:
oy 2 2D X (11.72)
AT -XD)

. _ ) L-a __ L-j
Therefore, “ grows if A decreases. But when A= lr, that is to say, Xy =X , Ve tends to zero.
AX = Axo(l—ﬁ)
We can then write: A and thus:

2D,AX y)
%(1— ) (11.74)

e TV T A x4

The maximum velocity is for A = 2ic.

We can verify that AV, = CONSt

In practice, we use the relation (11.74) to adjust the spacing between the lamellae: if v grows, 4 has
to decrease (Figure 11-34).

Cog <

Figure 11-34: Growth of secondary lamellae when the forward velocity of the solidification front increases, the gap
between the lamellae decreases
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Example of a eutectic structure: pearlite
A typical example of a eutectic structure is pearlite in carbon steel. This is a transformation occurring
in the solid state. Since diffusion essentially governs it, the formalism developed previously remains

valid. We can observe the progression in the austenite of ferrite and cementite (FesC) lamellae (Figure
11-35).

Yi| Y,

7 B 2B

Fe; C

Figure 11-35: Growth diagram of perlite

The transformation starts at the grain boundaries of austenite. We can have, at first, either a nucleus
of cementite or a ferrite nucleus. If the ferrite transforms first, carbon is absorbed from the austenitic
phase into the ferrite. This causes a decrease in the austenitic phase stability, leading to ferrite
formation. The growth is carried out cooperatively through carbon transfer from ferrite to cementite.
Hemispherical colonies are formed and propagated until they reach a neighboring colony (Figure 11-
36).

Figure 11-36: Perlite growth in austenite
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11.7 Solidification of a bar

Many alloys are cast as bars in a mold. The solidified matter is then used as a base for machining
processes. Knowing the structure of crystals in the bar, which can be quite non-homogeneous, is
crucial. The majority of metals shrink when they solidify. This cannot be avoided but must be

controlled in foundry operations.
/— Shrinkage pipe

— Chill zone

— Columnar zone

Equiaxed zone

t<—Mold

N o

Figure 11-37: Solidified bar in a mold. We can observe a withdrawal in the last solidified zone.

If the heat is extracted only by the bottom of the mold, the solidification interface remains flat, and
there are no shrinkage cavities. On the other hand, if the face is exposed to the air and has a poor heat
transfer rate, a pipe cavity will form.

Suppose the free surface does expel heat well. In that case, we can observe the formation of a crust
on the free surface, and the delayed solidification beneath the surface results in the formation of
porosities due to shrinkage. These porosities appear between the dendrites. They do not create any
problems in general because they are eliminated by rolling.

11.7.1 Crystallisation of the bar

Wi;w

h: 1\ul'(" J)

| A l ‘l].

Figure 11-38: Solidification structure schematic based on experimental images
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In general, we can set apart three different zones in the solidified bars:

i)A layer of metal solidifies first on the walls of the mold. Here, the supercooling is high so that
nucleation is eased. As a result, we have many nuclei, forming many small, non-oriented crystals.

i) With the thickening of the solidification layer, the temperature gradient decreases, and thus the
nucleation speed decreases. These conditions (limited supercooling but still high-temperature
gradients) are ideal for developing large oriented crystals (basaltic texture).

iii) Heat expulsion slows toward the end of solidification, and the temperature is relatively
homogeneous. We can then observe the formation of large crystals without preferential orientation
at the bar's core.

Segregation

During the solidification of an alloy, the liquid gets richer in solute. The portion of the liquid that
solidifies last is most enriched with solute. As a result, we can observe a greater concentration at the
heart of the bar (macrosegregation). Furthermore, we showed (in § 11.6) another form of segregation
observed at the dendrites level (microsegregation).

Physics of materials Chapter XI page 259



